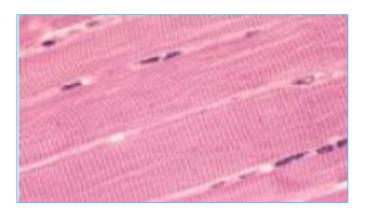

Section 10.1: The Function of Digestion

SBI3UP

Connective tissue

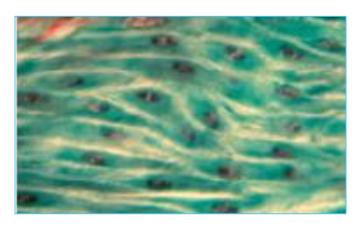
Epithelial tissue

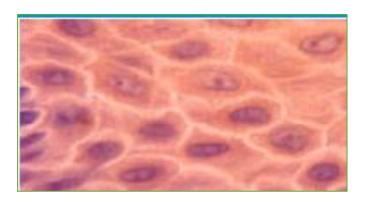

Muscle tissue

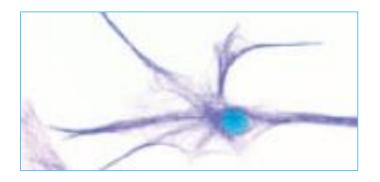
Nervous tissue

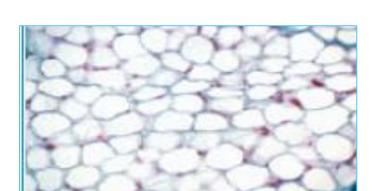

<u>Tissue:</u> a cluster of similar cells that share the same specialized structure and function.

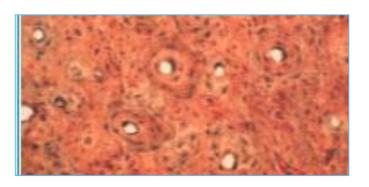
There are four main types of tissue:

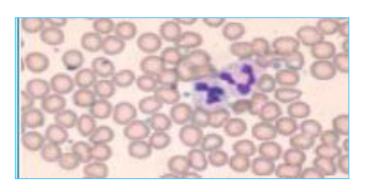

- 1. Epithelial
- 2. Muscle
- 3. Nervous
- 4. Connective


Skeletal Muscle

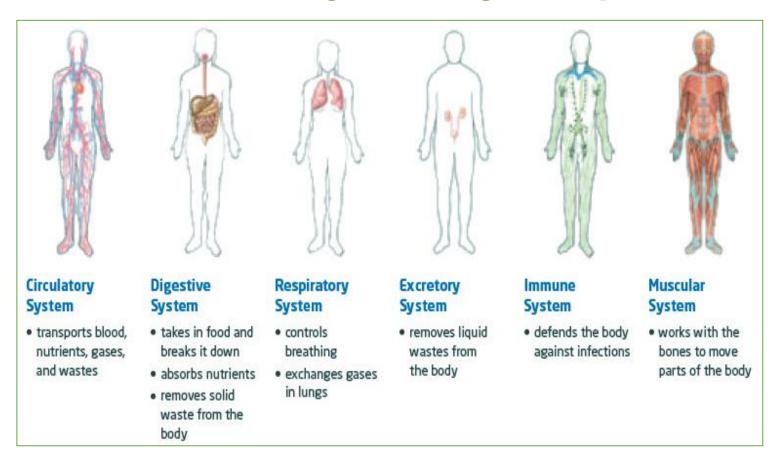

Cardiac Muscle


Smooth Muscle

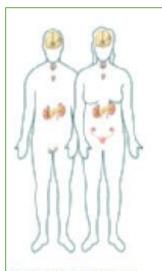

Skin Epithelial


Nervous Tissue

Fat

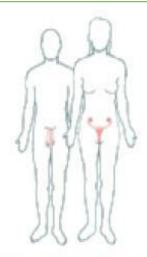


Bone



Blood

Cells-Tissues-Organs-Organs Systems



Cells-Tissues-Organs-Organs Systems

Endocrine System

 manufactures and releases hormones that act, along with the nervous system, to keep various body systems in balance

Reproductive System

 includes reproductive organs for producing offspring

Integumentary System

[pronounced in-TEG-u-MEN-tar-ee]

- includes skin, hair, and nails
- creates a waterproof barrier around the body

Nervous System

 detects changes in the environment and signals these changes to the body, which then responds

Skeletal System

 supports, protects, and works with muscles to move parts of the body

What does it mean to be healthy?

"Health is a state of complete physical, mental and social well-being and not merely the absence of disease or infirmity." -World Health Organization

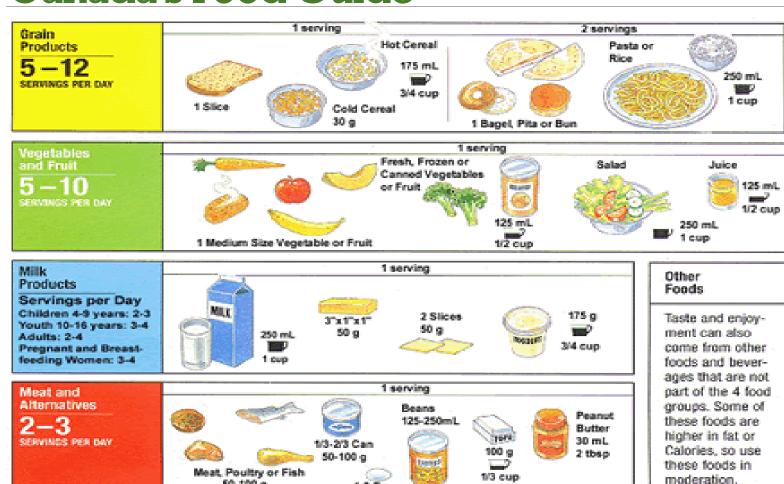
Physical Health + Mental Health + Social Health

What does it mean to be healthy?

Physical Health

Balanced Diet

Regular Exercise


Limited Exposure to Toxins

Canada's Food Guide

50-100 a

1-2 Eggs

Energy from Food

Cells in the body require constant supply of energy to perform functions.

Energy comes from consumption of food and the process of cellular respiration.

The amount of energy required depends on the individual.

Caloric Intake per Day

Males	Females
-------	----------------

Age	Sedentary ¹ Level	Low Active ² Level	Active ³ Level
2-3 y	1100	1350	1500
4-5 y	1250	1450	1650
6-7 y	1400	1600	1800
8-9 y	1500	1750	2000
10-11 y	1700	2000	2300
12-13 y	1900	2250	2600
14-16 y	2300	2700	3100
17-18 y	2450	2900	3300
19-30 y	2500	2700	3000
31-50 y	2350	2600	2900

	emaies			
,	Age	Sedentary Level	Low Active Level	Active Level
	2-3 y	1100	1250	1400
	4-5 y	1200	1350	1500
(6-7 y	1300	1500	1700
i	8-9 y	1400	1600	1850
	10-11 y	1500	1800	2050
	12-13 y	1700	2000	2250
	14-16 y	1750	2100	2350
	17-18 y	1750	2100	2400
	19-30 y	1900	2100	2350
	31-50 y	1800	2000	2250

Energy from Food

The amount of daily energy required usually depends on an individual's:

- 1) Physical activity
- 2) Medical conditions
- 3) Gender (female vs. Male)
- 4) Age

Energy Consumption

Food provides energy and building blocks for many organisms.

The energy consumed must be converted into a usable form that the body's cells recognize (i.e ATP).

The food we consume when broken down into smaller subunits can be used by the cells in the body to create new molecules that the cell can use for metabolism.

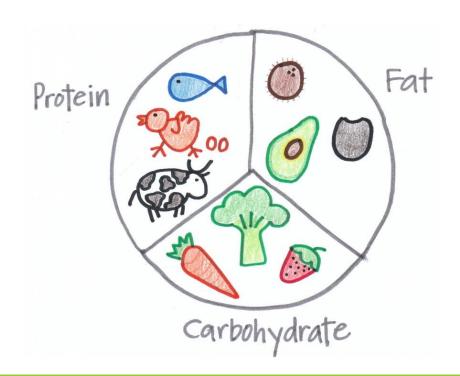
Nutrient:

Nutrients

Nutrients are divided into two groups:

1) Organic*

- produced by living organisms
- carbohydrates, proteins and fats
- contain C bonded to H and O

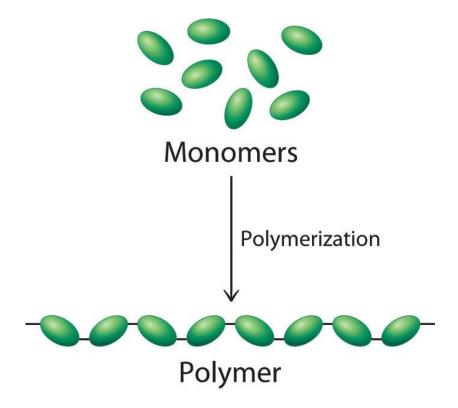

2) Inorganic

- comes from rocks, soil and the sea
- minerals

^{*}different from pesticide free organic in the grocery store – refers to its molecular makeup

Macromolecules

Macromolecules are large, complex arrangement of organic molecules. These molecules must be consumed everyday in order to receive essential building blocks and energy.



Macromolecules are required everyday and in large quantities.

Macromolecules - Structure

Monomer:

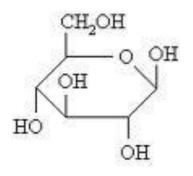
Polymer:

Macromolecules

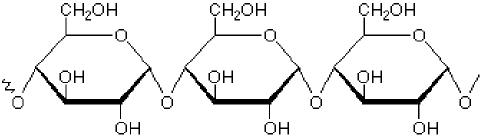
There are 4 main groups of Macronutrients:

- 1) Carbohydrates
- 2) Lipids
- 3) Proteins
- 4) Nucleic Acids

Consist of Carbon, Hydrogen & Oxygen atoms (Ratio --- 1 : 2 : 1)

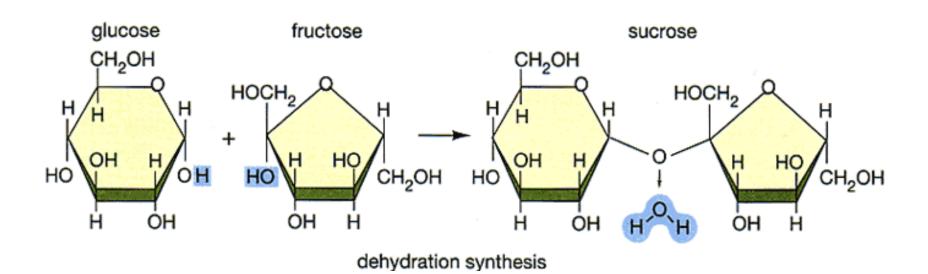

Provides short-term or long-term energy storage for organisms

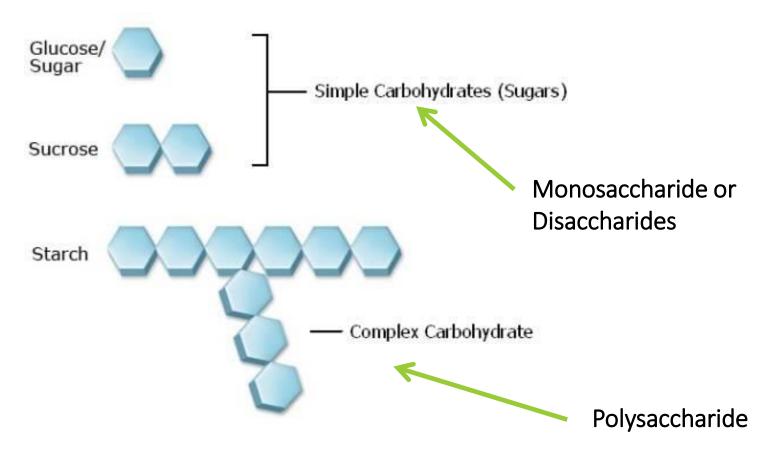
Provides materials to build cell membrane


Ex. Glucose $(C_6H_{12}O_6)$

Glucose

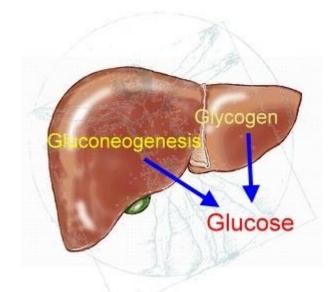
There are two forms of carbohydrates:


1) Monosaccahride (Simple Sugar)

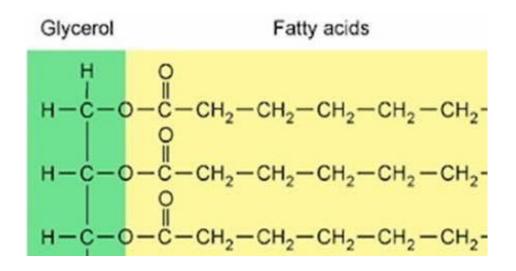

2) Polysaccharide (Complex sugar)

Monosaccharides do not need to be broken down and thus can be used directly as a form of quick energy

Disaccharides consists of two linked simple sugars but must be broken down to obtain **energy**.


Types of Carbohydrates

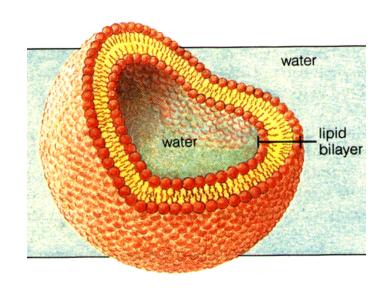
When large amounts of carbohydrates are consumed they are stored as **glycogen** in the liver and converted into fat.

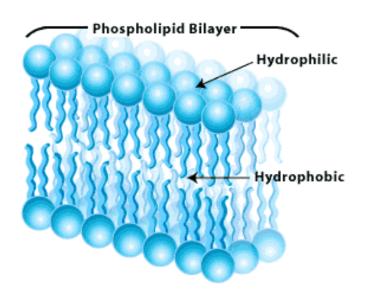

Examples of carbohydrates: potatoes, pasta, rice and bread.

Glycogen can be later broken down into glucose when the body requires energy.

2) Lipids

Lipids are complex compounds that are insoluble in water.

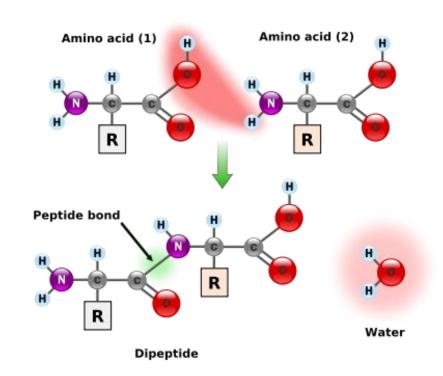



Energy Storage: store 2.25X more energy per gram than other biological molecules

Many lipids consist of three fatty acid chains and a glycerol.

2) Lipids

<u>Phospholipids</u> are a type of lipid that make up the cell membrane. Their hydrophilic (water-loving) and hydrophobic (water-hating) properties enable them to form a micelle.



3) Proteins

The body has a variety of proteins that differ in **shape**, **function** and **size**.

They are built from amino acid (a.a.) that are joined by peptide bonds.

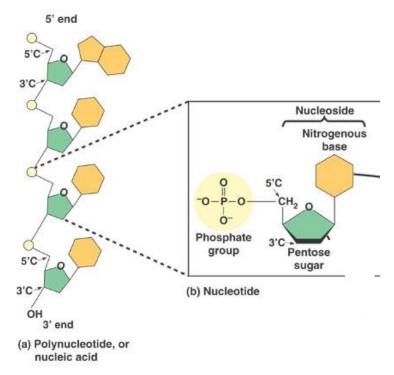
3) Proteins

There are 20 amino acids in total and 8 of them cannot be synthesized by the body and must be obtained by our food.

3) Proteins

Functions of a protein:

- Structure/support for blood, tissue, muscles
- Act as catalysts
- Provide immunity from infection
- Transport of substances across a cell

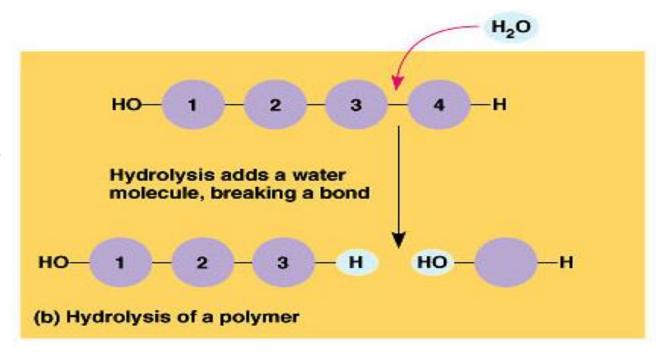

4) Nucleic Acids

Nucleic Acids enable an organism to grow and develop due to its ability

to create a genetic code.

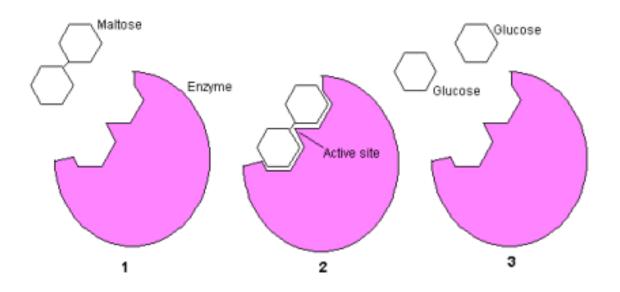
Composed of:

5 C sugarPhosphate groupNitrogenous base



Examples: DNA and RNA

Breakdown of Macromolecules


Nutrients must be broken down into smaller units so that they can be absorbed and delivered.

A <u>Hydrolysis reaction</u>
must occur to break the
bonds of the
macromolecules.

Enzymes

Proteins that behave as catalysts and help to speed up chemical reactions. They enable hydrolysis reactions to occur at a quicker rate.

Highly specialized and combine to particular substrates (molecule that enzyme bonds to)

Macromolecule Breakdown

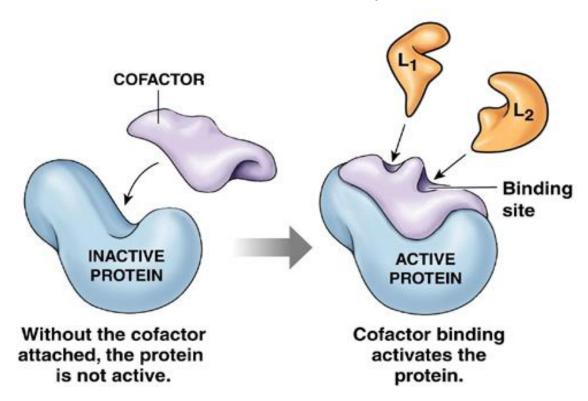
Type of enzyme	Macromolecule broken down	Monomer Subunit
Carbohydrase		
Lipase		
Protease		
Nuclease		

Minerals and Vitamins

Vitamins and minerals are micronutrients

Micronutrients must be taken in small amounts to be part of a balanced diet

Minerals and Vitamins


Minerals and vitamins are made up of both inorganic and organic substances.

Functions:

- Enable chemical reactions to occur
- Aid in tissue development and growth
- Immunity.

Vitamins

Vitamins are organic compounds act as co-enzymes. They bind to the active site and activate an enzyme.

Minerals

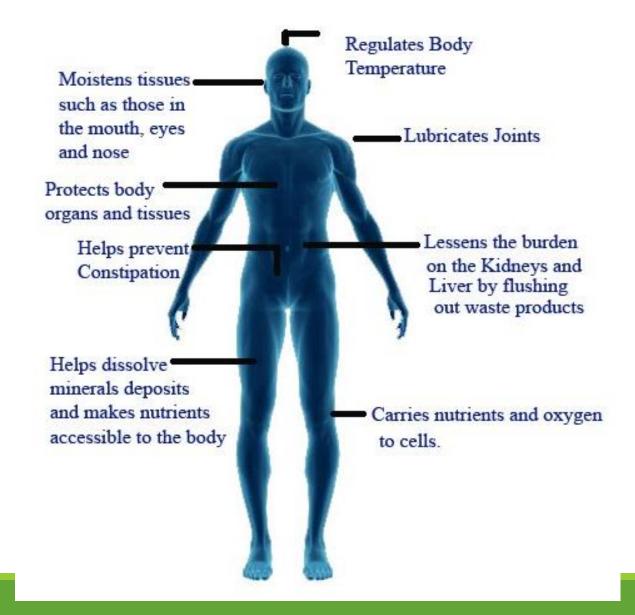
Minerals are inorganic compounds that must be continuously replenished in small quantities.

E.g: Bananas contain the mineral potassium

The body does not destroy them, but they are released through sweat and urine.

Examples of Vitamins

Vitamin	Key function in the body	Possible Sources
A (carotene)		
B1 (thiamine)		
C (ascorbic acid)		
D		
E		


Examples of Minerals

Mineral	Key function in the body	Possible Sources
Calcium		
Iron		
Magnesium		
Potassium		
Sodium		

Water

- Most important substance for the survival of animals.
- Most of human body weight is H₂O.
- 90% of the blood consists of water and it is required for the transport of nutrients in the body
- The extracellular fluid found outside of the cells also contains water, which helps remove waste from the cells.

Functions of water

Homework

Textbook:

- 1) Complete pg. 406 #1-6
- 2) Complete worksheets given in class