Intermolecular Forces

SBI4U

Types of Forces

- the attractive force between atoms within a molecule
- the attractive force between ions within an ionic crystal
- very strong forces
- include ionic and covalent bonds

INTERMOLECULAR FORCES:

- The attractive forces between molecules
- weaker than intramolecular forces

Intermolecular Forces (IMF)

Dipole – Dipole Forces

Attractive forces between polar molecules that have a **permanent dipole**. Dipole – Dipole forces are the *strongest intermolecular force*, but weaker than a covalent bond.

Ion – Dipole Forces

An Ion-dipole bond is an attractive force between an **ion (anion or cation)** and a molecule with a **permanent dipole**.

Ion-dipole forces are the strongest IMF due to the strong charge of an ion relative to a dipole.

Hydrogen Bonds

A hydrogen bond is typical formed betweenthe *lone pair of an electronegative atom* and the *hydrogen* that is bound to either an oxygen, nitrogen or fluoride atom.

London Dispersion Forces

Van der Waals forces occur between nonpolar molecules with <u>temporary dipoles</u>. Due to the electrons that are constantly in motion, <u>hot spots</u> are created within the molecules.

The molecules must be close together in order for these forces to occur.

Relative Forces of IMFs

TYPE OF FORCE	RELATIVE STRENGTH	EXHIBITED BY
lon-lon	very strong	Ionic Compounds
lon - Dipole	strong	An ion and a molecule with a permanent dipole
Hydrogen bond	moderate	Molecules with an O-H, N-H, or H-F bond
Dipole – Dipole	weak	Molecules with a permanent dipole
London Dispersion	very weak	All molecules

Water

- Water is required for all life on Earth.
- Cells are 70 95 % water.
- Extracellular fluid is also water-based
- Aqueous medium contains dissolved proteins, nutrients and ions essential for functioning.

What's so special about water?

- ✓ polar due to bent shape
- water molecules will from hydrogen bonds between one another

Properties of Water

1.Water Clings.

- Cohesion
- Adhesion

2. Water absorbs lots of heat

- High specific heat capacity and hear of vaporization.
- Moderates air/land temperature
- Allows animals to thermo-regulate via evaporative cooling.

Properties of Water

3. Solid water is less dense than liquid water.

- Highest density at 4°C
- Ice floats on liquid water
- Prevents bodies of water from freezing solid

Properties of Water

4. Water is a versatile solvent.

- Charged ends have a high affinity for charged ions and polar covalent substances.
- Allows many solutes to be dissolved and transported within the body.

Solubility of Substances in Water

Water is a great solvent due to its polarity.

Water is great at dissolving both **ionic (+,-) compounds and polar** (partial positively, partial negatively charged molecules) molecules.

Solubility of Substances in Water

Hydrophilic Properties:

E.g., Anions (chloride ions) in salt attracted to + poles of water

Solubility of Substances in Water

Hydrophobic Properties:

E.g Non-polar compounds are insoluble in water.

Oil – non-polar compound of carbon and hydrogen.

Soap:

Soap molecules have two distinct parts-a hydrophilic portion composed of ions called the polar head, and a hydrophobic carbon chain of nonpolar C-C and C-H bonds, called the nonpolar tail.

When soap is dissolved in H₂O, the molecules form micelles with the nonpolar tails in the interior and the polar heads on the surface. The polar heads are solvated by ion-dipole interactions with H₂O molecules.

Retrieved from: http://www.uiowa.edu/~c004121/notes/ch03_2.pdf

Figure 3.7

soap in water

Dissolving

Figure 3.8 The cell membrane

Phospholipids contain an ionic or polar head, and two long nonpolar hydrocarbon tails. In an aqueous environment, phospholipids form a lipid bilayer, with the polar heads oriented toward the aqueous exterior and the nonpolar tails forming a hydrophobic interior. Cell membranes are composed lagely of this lipid bilayer.

Homework

• Complete the IMFs Worksheet