Unit 1: Chemistry (4.3)

SNC2D

Chapter 4: Developing Chemical Equations

> **Chapter 5**:Classifying Chemical Reactions

Chapter 6:Acids and Bases

Chemical Reactions

A *chemical reaction* is a process in which new substances with new properties are formed.

In a chemical reaction, reactants

(the starting materials) undergo a

_____, changing

into the _____ of the

reaction.

Chemical Reactions

Reactant:

Product:

The explosive reaction between water (H_2O) and sodium (Na) produces light, heat, and hydrogen (H_2) gas.

Chemical Reactions

Law of Conservation of Mass:

Total mass of reactants = Total mass of products

Law of Conservation of Mass

Atoms present at the *beginning* of the reaction must still be present *after the reaction* has taken place

ATOMS CANNOT BE CREATED OR DESTROYED

How does this happen?

Atoms rearrange themselves, bonding to new atoms to make a different product

Law of Conservation of Mass

So when you write a chemical equation...

The number of atoms of each type must be the same on each side

Equations must be balanced!

A **chemical equation** is a representation of what happens to the reactants and products during a chemical change. There are **three** forms of chemical equations.

1. Word Equations:

hydrogen + oxygen — water

2. <u>Skeleton Equations :</u>

$H_2 + O_2 \longrightarrow H_2O$

<u>3. Balanced Chemical Equations</u>:

$\mathbf{2H}_2 \quad + \quad \mathbf{O}_2 \quad \longrightarrow \quad \mathbf{2H}_2\mathbf{O}$

A COEFFICIENT is a number that is placed in front of a chemical formula in a balanced chemical equation

Balancing Chemical Equations

The only way to balance a chemical equation is to change the <u>coefficients</u>. If you change a <u>subscript</u>, you will change the identity of the substance

$H_2 + O_2 \longrightarrow H_2O_2$

The **states** of the reactants and products may be included. The abbreviations of the states are written after the chemical formula they apply to.

State	Abbreviation	Example (at room temperature)	
Solid	(s)	sodium chloride: NaCl(s)	
Liquid	(ℓ)	water: H ₂ O(ℓ)	
Gas	(g)	hydrogen: H ₂ (g)	
Aqueous solution	(aq)	aqueous sodium chloride solution: NaCl(aq)	

Table 4.12 Abbreviations for the States of Reactants and Products

NOTE: Aqueous solution means that the product or reactant is dissolved in water.

How to Balance Chemical Equations

In order to create a balanced chemical equation, you must know how to determine the total number of atoms in a compound.

a) 2 NaCl

LET'S PRACTICE!

Determine the number of atoms of each element in the following compounds:

A) 2NAI

B) 3PCl₅

C) 2NaNO₃

D) $(NH_4)_2SO_4$

Tips for Balancing Chemical Equations

•Remember the diatomic molecules: H_2 , N_2 , F_2 , Cl_2 , Br_2 , I_2 and O_2 (Remember "HOFBrINCI")

•Make sure your chemical formulas are correct

If a reactant or product is a single element, balance it last

Do a final check by counting atoms of each element

Example 1: Balancing Chemical Equation

Problem:

A Bunsen burner works when methane gas burns in oxygen to produce carbon dioxide and water.

A) Write the balanced chemical equation for this reaction

Step 1: Write the word Equation

+

Step 2: Write the Skeleton Equation

+

Step 3: Count the atoms

Count the number of atoms of each type in reactants (left side) and products (right side)

 $CH_4 + O_2 \rightarrow CO_2 + H_2O$

Type of Atom	Reactants	Products	Balanced?
С			
н			
0			

Step 4: Balancing

 Multiply each compound by the appropriate <u>coefficients</u> to balance the number of atoms (do NOT change subscripts)

Balance compounds first and elements last

Balance hydrogen and oxygen last

•If a polyatomic ion appears in both a reactant and a product, think of it as a single unit

Trial and error (be patient ⁽ⁱ⁾)

Step 4: Balancing

Count the number of atoms of each type in reactants (left side) and products (right side)

$$_ CH_4 + _ O_2 \rightarrow _ CO_2 + _ H_2O$$

Type of Atom	Reactants	Products	Balanced?
С	1	1	
н	4		
0	2		

Tips for Balancing Chemical Equations

- Remember that these elements exist as diatomic molecules: hydrogen (H₂), nitrogen (N₂), fluorine (F₂), chlorine (Cl₂), bromine (Br₂), iodine (l₂), and oxygen (O₂), shown in Figure 4.22.
- Balance compounds first and elements last.
- Balance hydrogen and oxygen last. They often appear in more than one reactant or more than one product, so they are easier to balance after the other elements are balanced.
- If a polyatomic ion appears in both a reactant and a product, think of it as a single unit to balance the chemical equation faster.
- Once you think the chemical equation is balanced, do a final check by counting the atoms of each element one more time.
- If you go back and forth between two substances, using higher and higher coefficients, double-check each chemical formula. An incorrect chemical formula might be preventing you from balancing the chemical equation.

LET'S PRACTICE!

Balance each chemical equation:

A) Mg (s) + O_2 (g) \longrightarrow MgO (s)

B) Li (s) + $Br_2(g) \longrightarrow LiBr(s)$

C) Al (s) + CuO (s) \longrightarrow Al₂O₃ (s) + Cu (s)

D) $CaCl_2(aq) + AgNO_3(aq) \rightarrow AgCl(s) + Ca(NO_3)_2(aq)$

LET'S PRACTICE!

Write a word equation, a skeleton equation and a balanced chemical equation for each chemical reactions. Include the state of all the reactants/products in the equation.

a) A solid piece of magnesium reacts with oxygen gas to produce solid magnesium oxide.

a) Iron reacts with oxygen to produce rust, Fe_2O_3

HOMEWORK

Complete the sheets given in class.