Unit l: Chemistry (4.3)

Chapter 5:Classifying Chemical Reactions

Chapter 6:Acids and Bases

Chemical Reactions

A chemical reaction is a process in which new substances with new properties are formed.

In a chemical reaction, reactants
(the starting materials) undergo a
\qquad changing
into the \qquad of the reaction.

Chemical Reactions

Reactant:

Product:

The explosive reaction between water $\left(\mathbf{H}_{2} \mathbf{O}\right)$ and sodium (Na) produces light, heat, and hydrogen (H_{2}) gas.

Chemical Reactions

Law of Conservation of Mass:

Total mass of reactants = Total mass of products

Law of Conservation of Mass

Atoms present at the beginning of the reaction must still be present after the reaction has taken place

ATOMS CANNOT BE CREATED OR DESTROYED

HOW DOES THIS HAPPEN?

Atoms rearrange themselves, bonding to new atoms to make a different product

Law of Conservation of Mass

So when you write a chemical equation...
The number of atoms of each type must be the same on each side

Equations must be balanced!

Writing Chemical Equations

A chemical equation is a representation of what happens to the reactants and products during a chemical change. There are three forms of chemical equations.

1.Word Equations:

hydrogen + oxygen \longrightarrow water

Writing Chemical Equations

2. Skeleton Equations:

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathbf{O}
$$

Writing Chemical Equations

3. Balanced Chemical Equations:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Balancing Chemical Equations

The only way to balance a chemical equation is to change the coefficients.
If you change a subscript, you will change the identity of the substance

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}
$$

Writing Chemical Equations

The states of the reactants and products may be included. The abbreviations of the states are written after the chemical formula they apply to.

NOTE: Aqueous solution means that the product or reactant is dissolved in water.

Table 4.12 Abbreviations for the States of Reactants and Products

State	Abbrevlation	Example (at room temperature)
Solld	(s)	sodlum chloride: $\mathrm{NaCl}(\mathrm{s})$
Llquid	(ℓ)	water: $\mathrm{H}_{2} \mathrm{O}(\ell)$
Gas	(g)	hydrogen: $\mathrm{H}_{2}(\mathrm{~g})$
Aqueous solution	(aq)	aqueous sodlum chlorlde solutlon: NaCl(aq)

How to Balance Chemical Equations

In order to create a balanced chemical equation, you must know how to determine the total number of atoms in a compound.
a) 2 NaCl
a) $6 \mathrm{H}_{2} \mathrm{O}$

LET'S PRACTICE!

Determine the number of atoms of each element in the following compounds:
A) 2 NAI
B) $3 \mathrm{PCl}_{5}$
C) $2 \mathrm{NaNO}_{3}$
D) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Tips for Balancing Chemical Equations

-Remember the diatomic molecules: $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$ and O_{2} (Remember "HOFBrINCl")
"Make sure your chemical formulas are correct
-If a reactant or product is a single element, balance it last
-Do a final check by counting atoms of each element

Example 1:Balancing Chemical Equation

Problem:
A Bunsen burner works when methane gas burns in oxygen to produce carbon dioxide and water.
A) Write the balanced chemical equation for this reaction

Step l:Write the word Equation

Step 2:Write the Skeleton Equation

Step 3: Count the atoms

Count the number of atoms of each type in reactants (left side) and products (right side)
$\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Type of Atom	Reactants	Products	Balanced?
C			
H			
O			

Step 4: Balancing

-Multiply each compound by the appropriate coefficients to balance the number of atoms (do NOT change subscripts)
-Balance compounds first and elements last

Balance hydrogen and oxygen last
-If a polyatomic ion appears in both a reactant and a product, think of it as a single unit

Trial and error (be patient ())

Step 4: Balancing

Count the number of atoms of each type in reactants (left side) and products (right side)

$$
\mathrm{CH}_{4}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

Type of Atom	Reactants	Products	Balanced?
C	1	1	
H	4		
O	2		

Tips for Balancing Chemical Equations

- Remember that these elements exist as diatomic molecules: hydrogen $\left(\mathrm{H}_{2}\right)$, nitrogen $\left(\mathrm{N}_{2}\right)$, fluorine $\left(\mathrm{F}_{2}\right)$, chlorine $\left(\mathrm{Cl}_{2}\right)$, bromine $\left(\mathrm{Br}_{2}\right)$, iodine $\left(\mathrm{I}_{2}\right)$, and oxygen $\left(\mathrm{O}_{2}\right)$, shown in Figure 4.22.
- Balance compounds first and elements last.
- Balance hydrogen and oxygen last. They often appear in more than one reactant or more than one product, so they are easier to balance after the other elements are balanced.
- If a polyatomic ion appears in both a reactant and a product, think of it as a single unit to balance the chemical equation faster.
- Once you think the chemical equation is balanced, do a final check by counting the atoms of each element one more time.
- If you go back and forth between two substances, using higher and higher coefficients, double-check each chemical formula. An incorrect chemical formula might be preventing you from balancing the chemical equation.

Let's PRACTICE!

Balance each chemical equation:

A) $\mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{MgO}(\mathrm{s})$
B) $\mathrm{Li}(\mathrm{s})+\mathrm{Br}_{2}(\mathrm{~g}) \longrightarrow \mathrm{LiBr}(\mathrm{s})$
C) $\mathrm{Al}(\mathrm{s})+\mathrm{CuO}(\mathrm{s}) \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{Cu}(\mathrm{s})$
D) $\mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$

LET'S PRACTICE!

Write a word equation, a skeleton equation and a balanced chemical equation for each chemical reactions. Include the state of all the reactants/products in the equation.
a) A solid piece of magnesium reacts with oxygen gas to produce solid magnesium oxide.
a) Iron reacts with oxygen to produce rust, $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Homework
Complete the sheets given in class.

