Chemistry in Living Systems

SBI4U

Essential Elements of Life

Carbon (C), oxygen (O), hydrogen (H) and nitrogen (N) make up 96 % of living matter.

Elements	Symbol	% of human body weight
Oxygen	0	65
Carbon	С	18.5
Hydrogen	Н	9.5
Nitrogen	Ν	3.3
Calcium	Са	1.5
Phosphorus	Ρ	1.0
Potassium	К	0.4
Sulfur	S	0.3

Atoms and Elements

All matter is composed of extremely small particles called *atoms* which is the smallest unit of any given element.

Every atom has the same basic structure:

Subatomic Particles:

- Core nucleus of *protons* and *neutrons*
- Orbiting cloud of *electrons*

Atoms and Elements

Subatomic Particles

Subatomic Particle	Charge	Weight
Neutron (n ^o)	Neutral	1.7 x 10 ⁻²⁴ g
Proton (p +)	Positive	1.7 x 10 ⁻²⁴ g
Electron (e -)	Negative	0

Subatomic Particles

- Neutrons and protons are packed together to form a dense core known as the 'nucleus'
- Electrons move at the speed of light around the nucleus in a different orbital.

Elements and Periodic Table

Each element has a symbol associated with it that is recognized worldwide.

Elements and Periodic Table

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Lanthaniae series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
* * Actinide series	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Because they have the same number of electrons and protons, all isotopes of an element have the **same chemical properties**.

Radioactive Isotopes

Radioactive Isotope – the nucleus decays spontaneously. Thus it is not as stable as other isotopes.

Radioactive Dating

Radioactive Dating – the decay of radioactive isotopes can be mapped out to determine the age of a fossil.

Each radioactive isotope has a half-life before it decays into another element.

By calculating the half-life of the atom, scientists can identify the age of the fossil.

Radioactive Tracers

Radioactive tracers are radioisotopes used to follow chemicals through chemical reactions and trace their path as they move through the bodies of organisms.

Radioactive iodine is ingested

Gamma probe measuring thyroid gland radioactivity

FADAM.

Iodine – 131 is an isotope used to identify the presence of cancerous cells in the thyroid gland.

Energy Levels of Electrons

Electrons have a potential energy due to their attraction to the protons and their position in the atom.

Importance of Electrons

The chemical behaviour of an atom depends mostly on the number of electrons in its outermost shell (valence shell).

Importance of Electrons

Octet Rule: atoms tend to gain, lose or share electrons so that it can have 8 electrons in its valence shell.

Electron Orbitals

- It is difficult to predict the path of an electron.
- Instead of the 2-D model, scientists have predicted the space in which electrons spent the most amount of time.

Electron Orbitals

A The first shell contains up to 2 electrons in one spherical orbit (1s). B The second shell contains up to 8 electrons, 2 electrons in one spherical orbit (2s) and 6 electrons in three perpendicular dumbbell-shaped orbits (2p).

Forming Compounds

- Compounds are made up of at least two different kinds of atoms (e.g. H₂O)
- Bonds are formed by the sharing or transfer of electrons.

Ionic Bonds

Ionic Bonds and Lewis Dot Diagrams

Ionic bonds can also be represented using Lewis Dot Diagrams.

Electron-Name Structural Space-(molecular shell formula filling formula) model diagram H-H(a) Hydrogen (H₂) H H 0 0 (b) Oxygen (O₂) 0=0 H 0 O-H(c) Water (H₂O) H н

Covalent Bonds

Covalent Bonds and Lewis Dot Diagrams

Covalent Bonds can be represented using a Lewis Dot diagram. Complete the following:

TABLE	8.4 Ave	erage Bo	nd Ent	halpies (l	kJ/mol)					
Single	Bonds									
С—Н	413	N—H	391	О—Н	463	F—F	155			
C—C	348	N—N	163	0-0	146					
C—N	293	N-O	201	O—F	190	Cl—F	253			
С—О	358	N—F	272	0-C1	203	Cl—Cl	242			
C—F	485	N—Cl	200	O—I	234					
C—Cl	328	N—Br	243			B r— F	237			
C—Br	276			S—H	339	Br—Cl	218			
C—I	240	H — H	436	S—F	327	Br—Br	193			
C—S	259	H—F	567	S—Cl	253					
		H—Cl	431	S—Br	218	I—Cl	208			
Si—H	323	H — Br	366	S—S	266	I—Br	175			
Si—Si	226	H—I	299			I—I	151			
Si—C	301								can	
Si—O	368					_	thet dent	eral diffe	rence can	
Multip	le Bonds	;					vnat gene	etween s	ingle and	
C=C	614	N=N	418	02	495		double bo	nds?		
CEC	839	N≡N	941	<u> </u>					X O	
C=N	615	N=O	607	S=O	523				12 S	
C≡N	891			s=s	418					
С=О	799								Z	
C=O	1072									

Electronegativity

Electronegativity = Stronger pull of shared electrons

Atoms will differ in terms of the electronegativity. In a covalent bond, the atom with the **stronger electronegativity will have a stronger pull** on the electrons.

Electronegativity

Lowest Electronegativity

Electronegativity

1 H 2.20																
3 Li 0.98	4 Be 1.57		Pau	uling	Elec	tron	egat	ivity	Valu	ies		5 B 2.04	6 C 2.55	7 N 3.04	8 0 3.44	9 F 3.98
11 Na 0.93	12 Mg 1.31											13 Al 1.61	14 Si 1.90	15 P 2.19	16 S 2.58	17 Cl 3.16
19 K 0.82	20 Ca 1.00	21 Sc 1.36	22 Ti 1.54	23 V 1.63	24 Cr 1.66	25 Mn 1.55	26 Fe 1.83	27 Co 1.88	28 Ni 1.91	29 Cu 1.90	30 Zn 1.65	31 Ga 1.81	32 Ge 2.01	33 As 2.18	34 Se 2.55	35 Br 2.96
37 Rb 0.82	38 Sr 0.95	39 Y 1.22	40 Zr 1.33	41 Nb 1.6	42 Mo 2.16	43 Tc 1.9	44 Ru 2.2	45 Rh 2.28	46 Pd 2.20	47 Ag 1.93	48 Cd 1.69	49 In 1.78	50 Sn 1.96	51 Sb 2.05	52 Te 2.1	53 I 2.66
55 Cs 0.79	56 Ba 0.89	57 La 1.1	72 Hf 1.3	73 Ta 1.5	74 W 2.36	75 Re 1.9	76 Os 2.2	77 Ir 2.20	78 Pt 2.28	79 Au 2.54	80 Hg 2.00	81 Ti 1.62	82 Pb 2.33	83 Bi 2.02	84 Po 2.0	85 At 2.2
87 Fr	88 Ra															

Pauling Scale set electronegativities on a scale from 0.7 to 4.0

 Fr
 Ra

 0.7
 0.9

Electronegativity – Nonpolar Bond

E.g O₂ - oxygen atoms have the same electronegativity

Both oxygen atoms have the same electronegativity. This causes the electrons to be shared equally and there is no partial charge on either atom.

Electronegativity – Polar Bond

Polar Covalent Bond

Shared electrons spend more time near the oxygen nucleus.

As a result, the oxygen atoms gains a slightly *negative charge* and the hydrogen atoms become slightly *more positive charge*.

Electronegative Notations – Polar Bonds

bond dipole arrows

partial charge notation

Homework

Complete Polarity Worksheet

>Complete questions from the textbook: pg. 4-5 # 1-14 (Chemistry Review)