5.2 - The Structure of the Atom

 SNC1D
Recap...

An atom is the smallest particle of an element that still has the property of that element.

How big is an atom?

Recap...

https://www.youtube.com/watch?v=o-3I1JGW-Ck

What is an atom?

Recap . . . Dalton's Atomic Theory

All matter is made of small particles called atoms.
Atoms cannot be created, destroyed, or divided.
All atoms of the same element are identical in mass and size. The atoms of one element are different from the atoms of other elements.

Compounds are created when atoms of different elements link together in fixed proportions.

Structure of an Atom

Dense core: the nucleus

Less dense area, surrounding the nucleus

Contains electrons

Comparing Atoms of Different Elements

"equal to the number of \qquad * in the nucleus
"all of the elements have their own unique atomic number

Potassium (K) has an atomic number of 19.
There are 19 protons in its nucleus.
Atomic number

Atoms are electrically neutral.

- They have no charge.

All positive charges are balanced by an equal number of negative charges.

\# of protons = \# of electrons

Potassium (K) has an atomic number of 19.
There are 19 protons in its nucleus.
There are also 19 electrons orbiting the nucleus.

potassium
39.10

Atomic Mass and Mass Number

- All atoms have a mass, called the
- only the protons and neutrons are heavy
- electrons barely weigh anything; their mass is negligible

Round the atomic mass to the nearest whole number, to find the mass number.

Potassium (K) has an atomic mass of 39.10 amu. Its mass number is \qquad .

Atomic
 mass

Potassium (K) has an atomic mass of 39.10 amu . Its mass number is $\underline{39}$.

Mass number = \# protons + \# neutrons

heavy heavy

Potassium has \qquad neutrons in its nucleus.

Atomic

mass

Summarize the important information for potassium:

Symbol	Element	Atomic Number	Mass number	Protons	Electrons	Neutrons
K	Potassium					

Bohr-Rutherford diagram of a potassium atom

Summary:

Calculating the Number of Subatomic Particles

- atomic number $=$ number of protons
- number of protons = number of electrons
- mass number = number of protons + number of neutrons
- number of neutrons = mass number - atomic number

Practice:

1. What is the atomic number of tin?
2. What is tin's mass number?
3. How many of each particle is in one atom of tin ?
protons
ii. electrons
iii. neutrons

Protons
Electrons
Neutrons
Number number
(a) Sn

Practice:

1. What is the atomic number of mercury?
2. What is mercury's mass number?

3. How many of each particle is in one atom of tin?

i.	protons
ii.	electrons
iii.	neutrons

(a) Hg

Representing Aitoms

Standard atomic notation

Bohr-Rutherford diagram

Practice:

Represent each atom using standard atomic notation:

1. hydrogen
2. magnesium
3. oxygen
4. calcium
5. phosphorus
6. potassium

f) What is the atomic number for each of these atoms?
g) What is the chemical identity (element) of each of these atoms?
h) Describe how these atoms are different from each other.

Isotopes

Isotopes: Atoms of the same element that have the same number of protons, but different number of neutrons.

Homework

1. Copy the following table \& fill it in for the first 20 elements:

Atomic number	Element	Standard atomic notation	\# of protons	\# of electrons	\# of neutrons
1					
2					
3					

2. Fill in sheet: Getting to Know the Elements
