5.1 The Evolution of the Atomic Model

SNC1D

We've seen what we think atoms look like...

John Dalton, early 1800s

found that running electric current through water produced ______* and ______* gases

expanded on Particle Theory, to describe the behaviour of elements and compounds

Dalton's Atomic Theory

- All matter is made of small particles called **atoms**.
- Atoms cannot be created, _____*, or divided.
- All atoms of the same element are identical in ______** and size. The atoms of one element are different from the atoms of other elements.

 ^{***} are created when atoms of different elements link together in fixed proportions.

Dalton's Model of the Atom

The "**billiard ball**" model: Dalton envisioned atoms are small, indestructible particles. Oxygen

Joseph John Thomson, 1897

Discovered the existence of **negatively-charged particles** in atoms

Made his discovery by performing experiments with evacuated gas tubes, called cathode ray tubes

Video: Discovery of the Electron

Thomson's Observation	His Inference
Particles emitted from the cathode are attracted to positive charges	The cathode ray particles must be negatively-charged
The cathode ray particles have a much lower mass than hydrogen atoms	Cathode particles are much smaller than hydrogen atoms
All metals that he tested emit identical cathode rays	All atoms contain the same negatively-charged particles
Atoms are electrically neutral	Atoms must therefore contain positively-charged particles to balance the negative ones

Thomson's Model of the Atom

Negatively-charged particles (*) are embedded
in a positively-charged mass	

Called the "plum pudding" model • think *chocolate chip muffin*

Ernest Rutherford, 1911

Famous "gold foil experiment" Aimed *positively-charged alpha particles* at thin sheets of gold foil

Prediction: If the atom was composed of evenly-distributed positive and negative charges, the alpha particles *should pass right through*

Video: Discovery of the nucleus **Observation**: Most of the particles passed through, but a very small number of them **bounced backwards**

Inferences:

 The alpha particles bounced backwards because they hit a region of

 The majority of the atom's volume is empty space.

Expected outcome

Observed outcome

Rutherford's Model of the Atom

The **beehive** model:

The positive charges are contained in a small dense centre called the nucleus.

The electrons revolve around the nucleus.

RUTHERFORD'S ATOMIC MODEL

Opposition to Rutherford's model: Why don't the negative electrons fall into the positive nucleus?

Neils Bohr, 1922

Proposed that electrons were restricted to _____

Each orbit represents an **energy level**, and has a different distance from the nucleus.

Each electron shell represents an energy level.

*

Bohr developed this model by observing the **emission spectrum** of

Light is emitted when an electron **absorbs energy** (is "_____"), and then **releases it** as it falls down to its original energy state.

Continuous Spectrum

If the electrons could absorb any quantity of energy, a continuous spectrum would be produced.

Emission Lines

Since a non-continuous line spectrum is observed, this means electrons can only absorb **fixed** packets of energy (**quanta**, *sing*. **quantum**).

James Chadwick, 1932

Showed experimentally that neutral particles exist in the nucleus, along with the protons.

Homework

- Read Ch 5.1 p. 179- 185
- pg. 186 Q # 1, 2, 5, 6, 8
- Complete handout: Evolution of the Atomic Model

