Series and Parallel Circuits

Section 11.5

- Three important quantities of an electrical load:
- Potential difference (V)
- Current (I)
- Resistance (R)
- Related using Ohm's Law: $\mathrm{V}=\mathrm{IR}$

Loads can be added (in series or in parallel).

Adding loads can change these quantities.

Loads in Series

Current

- Since there is only one path for electrons, the current is same at every point in the circuit

$$
I_{T}=I_{1}=I_{2}=I_{3}
$$

Resistance

- The total resistance of the circuit $\left(\mathrm{R}_{\mathrm{T}}\right)$ is equal to the sum of the resistances of each individual load.

$$
\mathbf{R}_{T}=\mathbf{R}_{1}+\mathbf{R}_{2}+\mathbf{R}_{3} \ldots
$$

What is the total resistance in the circuit?

$$
R_{T}=8 \Omega
$$

Voltage

- The voltage of the battery is equal to the sum of the voltages of each load:

$\mathrm{V}_{\mathrm{T}}($ battery voltage $)=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3} \ldots$

- The overall drop in potential energy is set by the cell/battery.
- When multiple loads are present, the energy is lost in a series of smaller steps.
- The actual potential drop at each load depends on the resistance of the load.

Find the unknown potential difference

Diagram A

Diagram B

Loads in Parallel

Current

- Multiple paths: the current gets split every time it encounters a parallel connection

$$
I_{T}=I_{1}+I_{2}+I_{3} \ldots
$$

Resistance

- The total resistance of the circuit actually decreases, since less current is flowing through each individual load.
- You don't have to do any calculations on this one!

Voltage

- The voltage drop across each individual resistor still equals the voltage drop across the battery.

$$
V_{T}=V_{1}=V_{2}=V_{3}
$$

Applying Ohm's Law

Ohm's Law can still be used for circuits with multiple loads:
for an individual load, the resistance, current, and voltage of only that load would be used
for the total circuit, the total resistance, current, and voltage must be considered

Example 1

For the circuit pictured,
a) The total resistance is 18Ω. What is the individual resistance at resistor R ?
b) Use Ohm's Law to calculate the current in the circuit.

Example 2

a) Calculate the current at ammeter A.
b) The current measured at A_{2} is 36 A . Determine the current measured by ammeter A_{3}.

