Series and Parallel Circuits

Section 11.5

- Three important quantities of an electrical load:
 - Potential difference (V)
 - Current (I)
 - Resistance (R)
- Related using Ohm's Law:
 V = IR

Loads can be added (in series or in parallel).

Adding loads can change these quantities.

Loads in Series

Current

 Since there is only one path for electrons, the current is same at every point in the circuit

 $\mathbf{I}_{\mathrm{T}} = \mathbf{I}_{1} = \mathbf{I}_{2} = \mathbf{I}_{3}$

Resistance

 The total resistance of the circuit (R_T) is equal to the sum of the resistances of each individual load.

 $R_{T} = R_{1} + R_{2} + R_{3}...$

What is the total resistance in the circuit?

$$R_T = 8 \Omega$$

Voltage

 The voltage of the battery is equal to the sum of the voltages of each load:

 V_T (battery voltage) = $V_1 + V_2 + V_3$...

- The overall drop in potential energy is set by the cell/battery.
- When multiple loads are present, the energy is lost in a series of smaller steps.
- The actual potential drop at each load depends on the resistance of the load.

Find the unknown potential difference

Loads in Parallel

Current

 Multiple paths: the current gets split every time it encounters a parallel connection

Resistance

- The total resistance of the circuit actually decreases, since less current is flowing through each individual load.
 - You don't have to do any calculations on this one!

Voltage

• The **voltage** drop across each individual resistor still equals the voltage drop across the battery.

Applying Ohm's Law

Ohm's Law can still be used for circuits with multiple loads:

for an **individual load**, the resistance, current, and voltage of only that load would be used

for the **total circuit**, the total resistance, current, and voltage must be considered

Example 1

For the circuit pictured,

- a) The total resistance is 18 Ω . What is the individual resistance at resistor *R*?
- b) Use Ohm's Law to calculate the current in the circuit.

Example 2

- a) Calculate the current at ammeter A.
- b) The current measured at A_2 is 36 A. Determine the current measured by ammeter A_3 .

