Measuring Electrical Resistance

Section 11.4

Electrical Resistance

- 1a. Electrical resistance The ability of a substance to <u>slow down</u> the flow of electric current, and <u>convert</u> electrical energy into other forms of energy.
 - All electrical loads have this property.

 Resistance occurs because of <u>collisions</u>
between the electrons in the current, and the atoms that make up the substance.

- 2. **Resistors** are devices used in electric circuits to decrease the current through a component in a circuit by a certain amount.
 - They don't convert electrical energy into anything usable, but they do produce <u>heat</u> as a result.

Different sizes = Different amounts of resistance

Two different circuit symbols for resistors.

- Metals are very good conductors, but they still provide some resistance to electrical current.
- The best conductors provide very little resistance - so little that it can be considered negligible.

(3) Factors Affecting Resistance of a Wire

- **A. Type of material** Resistance is different, depending on the identity of the material.
 - <u>For example</u>, a piece of copper wire has <u>lower</u> resistance than the same length of iron wire.

Which material will be more suitable for producing wires? *copper*

B. Length

The longer the wire, the higher the resistance.

A shorter wire has less resistance than a longer wire of the same diameter that is made from the same material.

C. Diameter (thickness)

The thicker the wire, the lower the resistance.

A thicker wire has less resistance than a wire of the same length that is made from the same material.

D. Temperature

• The hotter the temperature, the higher the resistance.

 Hotter temperatures cause the atoms in the wire to move faster, which increases the number of collisions.

Relating Current to Resistance and Voltage

4. When **resistance is increased**, what happens to the **current**? (Think about the water analogy)

current decreases

5. When **voltage is increased**, current <u>increases</u>.

Difference in tank height = Potential energy difference (voltage)

Ohm's Law

 describes the relationship between three quantities: resistance (R), potential difference (V), and current (I)

6. The formula can also be re-arranged to find **resistance**, or **current**.

Rising temperatures can raise a material's resistance.

- (7) Ohmic resistors always obey Ohm's Law:
 - have a constant resistance, regardless of temperature
- A graph of voltage vs. current will always show a straight line.

Ohmic resistor:

graph is a straight line

Non-ohmic resistor:

graph isn't a straight line

Ohm's Law: Sample Problem

A technician is checking the circuits on a vehicle. The technician measures the current entering a component as 0.75 A. The potential difference across the component is 12 V. What is its resistance?

GIVEN:

ANALYSIS & SOLUTION:

STATEMENT:

REQUIRED:

Homework

Resistance

- 1. Read 11.4
- 2. **Define** and give an **example** the following two terms: superconductor, non-ohmic conductor
- 3. pg. 465 #2, 3, 4
- 4. pg. 467 #4-7

Ohm's Law

- 1. Ohm's Law practice problems
- 2. Pg. 464 #1-6
- 3. Pg. 467 #1-7