Date: \qquad

Electrical Efficiency

Not all of the energy consumed by a device is converted into the desired form of energy.
Electrical efficiency - The amount of useful energy an electrical device produces, expressed as a percentage of the energy supplied to the device.

Example:

An incandescent light bulb has an electrical efficiency of 10\%.

- ___ \% of the electricity supplied to the bulb is "useful" (converted to light).
- The remaining \qquad $\%$ is converted into heat.

Calculating electrical efficiency:

$$
\begin{aligned}
& \% \text { efficiency }=\frac{\text { useful energy output }}{\text { total energy input }} \times 100 \% \\
& \% \text { efficiency }=\frac{E_{\text {out }}}{E_{\text {in }}} \times 100 \%
\end{aligned}
$$

Energy can be expressed using many different units. The ones you should be familiar with are:

- Kilowatt-hours (kW•h)
- Watt-seconds (W•s), which are equal to Joules (J)

Practice Problem

A toaster oven uses 1200 J of energy, and produces 850 J of thermal energy. Calculate the percent efficiency of the toaster oven.

Practice Problems: Efficiency

1. A washing machine has a power rating of 512 W . If one cycle has 30 min , how much energy does the machine use per cycle? (express your answer 4 ways - in watt-seconds, joules, kilojoules, and kilowatt-hours)
2. "A radio is not 100% efficient." What does this mean?
3. If a light bulb uses 30000 J of electrical energy and emits 900 J of light energy, what is the percent efficiency of the light bulb?
4. The spin cycle of a clothes washer operates for 3 min at a power of 300 W (this represents the energy input). The useful output from the washer is 40 kJ . What is the percent efficiency of the washer?
5. A motor is 80% efficient. If it is supplied with $200 \mathrm{~kW} \cdot \mathrm{~h}$ of energy, how much useful work can the motor do?
6. Calculate the cost of operating the following devices. The cost of electricity is $12 \Phi / \mathrm{kW} \cdot \mathrm{h}$:
a. A 100 W incandescent light bulb for 1000 hours
b. A 13 W CFL bulb for 1000 hours
c. A 400 W computer for 600 hours
d. A refrigerator operating at its power of 750 W for one year
