\qquad

WORKSHEET: QUANTITIES IN CIRCUITS

1. Determine the equivalent (total) resistance for each of the following circuits below.

Circuit $\mathrm{B}: \mathrm{R}_{\mathrm{T}}=$ \qquad Ω

Circuit $\mathrm{C}: \mathrm{R}_{\mathrm{T}}=$ \qquad Ω
2. Determine the total voltage (electric potential) for each of the following circuits below.
a)

b)

Circuit A: $V_{T}=$ \qquad V
Circuit $B: V_{T}=$ \qquad V
3. Fill out the table for the circuit diagramed at the right. (Note - The resistance of each is different, which means the resistors are not identical. You will need to use Ohm's Law to find some of these quantities)

Circuit Position	Voltage (V)	Current (A)	Resistance ($\mathbf{\Omega}$)
$\mathbf{1}$			10.0
$\mathbf{2}$			20.0
$\mathbf{3}$			30.0
Total	6.00		

4) A 6.0 -ohm lamp requires 0.25 ampere of current to operate. In which circuit below would the lamp operate correctly when switch S is closed?
A)

B)

D)

Questions 5 and 6 refer to the following:
A 50 -ohm resistor, an unknown resistor R, a 120-volt source, and an ammeter are connected in a complete circuit. The ammeter reads 0.50 ampere.

5) Calculate the total resistance of the circuit shown.
6) Determine the resistance of resistor R shown in the diagram.

Questions 7 through 10 refer to the following:
A 3.0-ohm resistor, an unknown resistor, R, and two ammeters, A_{1} and A_{2}, are connected as shown below with a 12 -volt source. Ammeter A_{2} reads a current of 5.0 amperes.

7) Determine the voltage drop across resistor R.
8) Calculate the current measured by ammeter A_{1} in the diagram shown.
9) Determine the current measured by ammeter $A 3$ in the diagram.
10) Calculate the resistance of resistor R.
11) The load across a $50.0-\mathrm{V}$ battery consists of a series combination of two lamps with resistances of 125Ω and 225Ω.
a) Draw a circuit diagram for this circuit.
b) Find the total resistance of the circuit.
c) Find the current in the circuit.
d) Find the potential difference across the $125-\Omega$ lamp.
12) The load across a $12-\mathrm{V}$ battery consists of a series combination of three resistances are $15 \Omega, 21 \Omega$, and 24Ω, respectively.
a. Draw the circuit diagram.
b. What is the total resistance of the load?
c. Find the circuit current?
13) The load across a 40-V battery consists of a series combination of three resistances R_{1}, R_{2}, and R_{3}. R_{1} is 240Ω and R_{3} is 120Ω. The potential difference across R_{1} is 24 V .
a. Find the current in the circuit.
b. Find the equivalent resistance of the circuit.
c. Find the resistance of R_{2}.
14) The load across a 12-V battery consists of a series combination of three resistances R_{1}, R_{2}, and R_{3}. R_{1} is $210 \Omega, R_{2}$ is 350Ω, and R_{3} is 120Ω.
a. Find the equivalent resistance of the circuit.
b. Find the current in the circuit.
c. Find the potential difference across R_{3}.

Answers

1b) 7Ω
6) 190Ω

11d) 17.9 V
14a) 680Ω

1c) 14Ω
7) 12 V

12b) 60Ω
14b) 0.018 A

5) 240Ω

11b) $350 . \Omega \quad$ 11c) 0.143 A
13b) $400 \Omega \quad$ 13c) 40Ω

